Room temperature triplet state spectroscopy of organic semiconductors

نویسندگان

  • Sebastian Reineke
  • Marc A. Baldo
چکیده

Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal Ion Enhanced Charge Transfer in a Terpyridine-bis-Pyrene System

The synthesis, electrochemical and photophysical properties of a branched molecule 3,5-bis(pyrene-1-yl)-4'-phenyl-2,2':6',2″-terpyridine are reported. Spectroscopy in different solvents reveals that an optical electron transfer from the pyrene donor to the terpyridyl electron acceptor can occur in polar media, as the system displays both charge transfer (CT) absorption and CT emission. Furtherm...

متن کامل

Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are i)negative in the triplet state contrast to the singlet state ii) it increases with increase in pressure  iii)further...

متن کامل

Davydov splitting in triplet excitons of tetracene single crystals

This work reports room temperature Davydov splitting in triplet transitions Tn ← T1 of tetracene single crystals. This was observed through femtosecond transient absorption spectroscopy with polarized ‖ b and ⊥ b probing on the (ab) face of the 300 nm thick crystal. A Davydov splitting of 0.04 eV (286 cm−1) was obtained on an excited state absorption signal ascribed to triplet excitons in Birec...

متن کامل

Morphology effectively controls singlet-triplet exciton relaxation and charge transport in organic semiconductors.

We present a comparative study of ultrafast photoconversion dynamics in tetracene (Tc) and pentacene (Pc) single crystals and Pc films using optical pump-probe spectroscopy. Photoinduced absorption in Tc and Pc crystals is activated and temperature-independent, respectively, demonstrating dominant singlet-triplet exciton fission. In Pc films (as well as C60-doped films) this decay channel is su...

متن کامل

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles were studied. The effect of size on the properties, by capping silver (Ag) and gold (Au) nanoparticles by thiosemicarbazide (TSC) was investigated. The nanoparticles were synthesized by chemical reduction method. The structural formation, surface morphology, phase stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014